

MARCH 2016

PROJECT MANAGEMENT

Instructions to candidates:

- Time allowed: Three hours (plus an extra ten minutes' reading time at the start do not write anything during this time)
- b) Answer FIVE questions with TWO from Section A and THREE from Section B
- c) All questions carry equal marks. Marks for each question are shown in []
- d) Non-programmable calculators are permitted in this examination

SECTION A

1.	a) b)	Identify and describe the main criteria for project selection models. List FOUR numeric and also FOUR non-numeric types of project selection models.	[12 <u>]</u> [8]
2.	a) b)	Define the terms monitoring and controlling , in the context of project management. Discuss the THREE types of control that can be exercised on projects.	[10] [10]
3.	Dis	cuss what are commonly considered to be the THREE broad objectives of any project.	[20]
4.	Ho	w can probability and risk management assist the project manager?	[20]

SECTION B

5. The following information is extracted from a project to develop a new town centre hotel and shopping complex:

Activity	Duration (weeks)	Predecessors	Resources	
	(: : :)		1 Real Estate Consultant	
_	4	-	1 Survey Team	
A			2 Access Permits	
			1 Legal Advisor	
			4 Legal Assistants	
В	3	-	£72,000	
		-	2 Architects	
			1 Financial Analyst	
С	6		1 Drill Rig/Crew	
			8 Soil Tests	
			3 Civil Engineers	
D	3	В	£39,000	
Е	3	A,D	£53,000	
F	2	В	£45,000	
	3		1 Architect	
			4 CAD/CAM Engineers	
G		E	3 Interior Decorators	
			2 Landscape Designers	
			2 Modelling Kits	

Resource Costs:

Real Estate Consultant:	£70/hour	Survey Team:	£1,000/day
Financial Analyst:	£65/hour	Drill Rig/Crew:	£750/day
Access permit:	£250	Legal Advisor:	£100/hour
Legal Assistant:	£30/hour	Soil Tests:	£150 each
Civil Engineer:	£75/hour	Architect:	£85/hour
CAD/CAM Engineer:	£50/hour	Interior Decorator:	£55/hour
Landscape Designer:	£70/hour	Modelling Kit:	£3,250

The project is working a standard 8-hour day, 5 days a week. Day rates apply on working days only. Calculate:

a) i the budget for activities A, C and G [10] ii the baseline budget for the project [2]

b) The Project Manager discovers a scheduling conflict and decides to complete Activity G in 2 weeks instead of the scheduled 3 weeks. This will entail working 60-hour weeks for each of the two weeks. Personnel are currently paid a premium of 30% for overtime hours, defined as hours worked in excess of 40 in a given week. Recalculate the budget for Activity G in light of this information. What is the effect of this action on the overall budget?

6. The following table shows the activities and their corresponding durations (weeks) for a project involving the retraining of staff on a new Management Services System:

Activity Duration (weeks)

Activity	Optimistic	Most likely	Pessimistic
	(O)	(L)	(P)
Α	15	17	19
В	20	21	22
С	12	12	12
D	15	17	20
E	4	6	10
F	5	6	7
G	7	8	10
Н	7	9	10
I	10	12	14
J	9	11	15

- Calculate the expected duration for critical path activities A-C-F-J, and the expected project duration.
- b) Calculate the project standard deviation.
- c) The Project Manager requires the project to be completed within 46 weeks. Comment on the likelihood of the project meeting this deadline.
- 7. The following information has been extracted from a project to develop a component for the ignition system of a new model of all electric car:

Activity	Duration (weeks)	Predecessors	Cost (£000)
Α	10		100
В	4	А	75
С	6	В	180
D	3	В	250
E	2	С	100
F	7	C,D	100
G	5	E,F	200
Н	3	F	50

- a) Calculate the scheduled completion time and identify the critical path for this project.
- b) Assuming that each activity starts as early as possible, construct a Gantt for this project.
- c) From the chart obtained in part (b), draw a graph showing the cumulative costs over the lifetime of the project.

continued overleaf

[5] [8]

[7]

[7] [8]

[5]

8. The following network diagram and additional information relate to a project to install a new smart lighting system to an apartment building:

Activity	Normal Time (Days)	Normal Cost (£000)	Crash Time (Days)	Crash Cost (£000)
Α	5	6	4	9
В	7	3	-	-
С	10	9	7	12
D	4	7	-	-
E	6	8	5	10
F	5	3	4	6
G	4	3	3	6

Find:

- a) The critical path, the normal project duration and the normal project cost.
- b) The crash cost per day for EACH activity.
- c) Determine the optimal crashing policy that should be adopted to meet a deadline of 16 days at minimum cost. [10]

[4] [3]

d) How would the project be affected if it is subsequently discovered that activity A cannot be crashed? [3]